Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

cis-[rac-1,3-Bis(phenylsulfinyl)propane-S, S^{\prime}]dichloroplatinum(II)

Wei Chen, Miao Du, Ruo-Hua Zhang and Xian-He Bu*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: buxh@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.047$
$w R$ factor $=0.114$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

In the crystal structure of the title compound, $\left[\mathrm{PtCl}_{2}-\right.$ $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}\right)$], the central $\mathrm{Pt}^{\mathrm{II}}$ ion is four-coordinated in a slightly distorted square-planar geometry. The crystal represents the racemate formed by the molecules with the (R, R) and (S, S) configurations of the sulfur chiral centres in the chelate ring. The pseudo-torsion angle between two $\mathrm{S}=\mathrm{O}$ groups $(\mathrm{O}=\mathrm{S} \cdots \mathrm{S}=\mathrm{O})$ is $165.8(2)^{\circ}$ and the dihedral angle formed by the planes of the two phenyl rings is $146.5(2)^{\circ}$.

Comment

A number of Pt complexes with monosulfoxide have been isolated and fairly well characterized (Calligaris \& Carugo, 1996). It was noted that the sulfoxide group normally coordinates soft metals (Pt, Pd etc.) via its S atom (Kagan \& Ronan, 1992). $\mathrm{Pt}^{\mathrm{II}}$ usually bonds to bis(sulfoxides) in a cischelate mode which may potentially produce complexes with antitumor activity. There are, however, just a few examples of the complexes of this type which were structurally characterized (Cattalini et al., 1979). In this paper, we report the crystal structure of a new $\mathrm{Pt}^{\mathrm{II}}$ complex with the bis(sulfoxide) ligand, namely cis-[rac-1,3-bis(phenylsulfinyl)propane- S, S^{\prime}]dichloroplatinum(II), (I).

(I)

The crystal represents the racemate formed by the molecules with the (R, R) and (S, S) configurations of the sulfur chiral centres in the chelate ring. The central $\mathrm{Pt}^{\mathrm{II}}$ atom in the title complex, (I), is four-coordinated with two S-donors of the chelate ligand and two terminal Cl ligands, in a slightly distorted square-planar geometry, as shown in Fig. 1. The chelate ring adopts a distorted chair conformation flattened at the platinum end; the displacements of the Pt 1 and C 2 atoms from the least-squares plane drawn through the $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{S} 2 / \mathrm{C} 3$ atoms (planar to within $0.04 \AA$) are equal to 0.4836 (4) and $-0.771(3) \AA$, respectively. The $C 4$ and $C 10$ atoms are displaced from this plane by 1.241 (3) and -1.631 (2) A. The pseudo-torsion angle between the two $\mathrm{S}=\mathrm{O}$ groups $(\mathrm{O} 1=\mathrm{S} 1 \cdots \mathrm{~S} 2=\mathrm{O} 2)$ is $165.8(2)^{\circ}$ and the dihedral angle formed by the planes of the two phenyl rings is $146.5(2)^{\circ}$. A number of similar conformational features have been reported

Received 10 April 2001 Accepted 20 April 2001 Online 30 April 2001

Figure 1

ORTEPII (Johnson, 1976) view of the title complex with 30% probability displacement ellipsoids.
for the $\mathrm{Pt}^{\mathrm{II}}$ complex of rac-1,2-bis(phenylsulphinyl)ethane with a five-membered chelate ring (Cattalini et al., 1979); the bond distances and angles in the latter complex are also in good agreement with those found for (I).

Experimental

rac-1,3-Bis(phenylsulfinyl)propane (Bpsp) was prepared according to the reported procedure of Zhang et al. (1997). To an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ with heating was slowly added a chloroform solution of equimolar Bpsp ($70.4 \mathrm{mg}, 0.24 \mathrm{mmol}$) with vigorous stirring. The white complex soon precipitated. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained from a dimethylformamide-methane solution by slow evaporation of the solvent. Yield: 87.4 mg (65%). FT-IR data (KBr pellet, $\left.\mathrm{cm}^{-1}\right)$: $1131(s, \mathrm{~S}=\mathrm{O})$. Analysis calculated for the title complex: C 32.26 , H 2.89%; found: C 32.18 , H 2.88%.

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}\right)\right]$
$M_{r}=558.39$
Monoclinic, $P 2_{1} / n$
$a=7.5755$ (4) \AA
$b=21.6570(12)$) \AA
$c=11.0354$ (6) \AA
$\beta=103.300(1)^{\circ}$
$V=1761.94$ (17) \AA^{3}
$Z=4$
$D_{x}=2.105 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7023
\quad reflections
$\theta=2.7-25.0^{\circ}$
$\mu=8.51 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Prism, colourless
$0.30 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART 1000 diffractometer
ω scans
Absorption correction: multi-scan
[SAINT (Bruker, 1998) and
SADABS (Sheldrick, 1997)]
$T_{\text {min }}=0.185, T_{\text {max }}=0.225$
7105 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.114$
$S=1.04$
3062 reflections
199 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{S} 1$	$2.2412(18)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.798(8)$
$\mathrm{Pt} 1-\mathrm{S} 2$	$2.2501(15)$	$\mathrm{S} 1-\mathrm{C} 4$	$1.798(8)$
$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.3118(17)$	$\mathrm{S} 2-\mathrm{C} 3$	$1.795(9)$
$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.3067(19)$	$\mathrm{S} 2-\mathrm{C} 10$	$1.778(7)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.453(6)$		
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{S} 2$	$98.71(7)$	$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$86.21(7)$
$\mathrm{S} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$	$174.19(6)$	$\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{Cl} 1$	$173.70(7)$
$\mathrm{S} 2-\mathrm{Pt} 1-\mathrm{Cl} 2$	$86.50(7)$	$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{Cl} 1$	$88.42(7)$

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the ridingmodel approximation with displacement parameters derived from the atoms to which they were bonded. The $U_{\text {iso }}$ for the H atoms were set to be $1.2 U_{\text {eq }}$ for the parent atom. The highest peak is $1.34 \AA$ from Pt1 and the deepest hole is $0.81 \AA$ from Pt1.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998).

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 29971019), Tianjin Natural Science Foundation and the TransCentury Talents Training Program Foundation from the State Education Ministry of China.

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Calligaris, M. \& Carugo, O. (1996). Coord. Chem. Rev. 153, 83-154.
Cattalini, L., Michelon, G., Marangoni, G. \& Pelizzi, G. (1979). J. Chem. Soc. Dalton Trans. pp 96-101.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kagan, H. B. \& Ronan, B. (1992). Rev. Heteroatom Chem. 7, 93-116.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, R. H., Ma, B. Q., Bu, X. H., Wang, H. G. \& Yao, X. K. (1997). Polyhedron, 16, 1123-1125.

